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kLapunov's direct method is employed in the design of intentionally

_onlinear controllers for a class of nonlinear, t£me varying processes.

The criterion of asymptotic stability is applied to the equation for

the error between the process output and a desired output obtained

from a model reference. A control signal generated on the basis of

the error continually forces the process output to approach the desired

_atpuu+ The design procedure is developed for processes containing a

single time varying, nonlinear gain element as well as linear time

varying par_ueters. Restrictions on the nonlinear function are derived.

In a general example the design procedure is applied to a second

order process containing a randoLtly switching nonlinear gain element

and also a tLme varying right half plane pole. A second example,

in which practical design considerations are discussed, involves the

design of a controller for a conditionally stable process. Analogue

computer results presented for both examples are in good agreement

with theoretical results. /_ _cV
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I. _!TRODUCTICN

The direct method of Liapunov has been _mployed in the design of

intentionally nonlinear controllers for linear time varying processes 1.

The design is based on comparing the processes output to a model

re_"erence w_ich has the desired output. A control signal generated on

the basis of the comparison forces the difference between model and

process output to be zero. The design procedure insures asymptotic

stability of the resultant system.

In this paper the design procedure discussed above is extended to

processes of the type shown in Fig. 1., i.e. processes containing a

single time vaiTing3 nonlinear gain element as well as linear time varying

parameters. Restrictions on f(y,t) are as indicated in (2) and (27). The

general form of f(yjt) is as indicated in Fig. 2.

The nonl_%ear controller in Fig. 1 generates a controlled input,

u(t), which can be a function of any or all of the signals c, Cd, e, r,

or their derivatives. This controlled input is such that it forces

the time derivative of a positive definite Liapunov function, V(e,&)

to be negative definite. Consequently, the equilibrium state

corresponding to e --$ = 0 is asymptotically stable in the large, i.e.

the process output must eventually equal the model out under any initial

conditions.

A general example to illustrate the design procedure is given in

which f(y,t) randomly assumes the t_ forms of Fig. 3a, while a(t) of

Fig. 1 switches randomly between 0 and -1.

Another example of more practical interest is given in which a

controller is designed for the conditionally stable process illustrated

in Fig. 9. Without the controlled input, u(t), the process is unstable
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for large step inputs, r(t). The presence of the cor_troller makes the

system stable for any magnitude of step input.

Ar_lo&_ computer results for both _x_mples are presented which

demonztrate the effectiveness of the design. Step responses and

trajectories in the e,e plane are sho_n for the general example. Phase

plane trajectol_ies are given for the example involving the conditionally

stable system.
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I!. _ov

The process to be controlled in Fig. 1 is described by the equation

"_ + a(t) _ = f(y,t)

where f(y,t), as sho_n in Fig. 2, is a nonlinear gain element which

satisfies the conditions:

f (o,t)= o

(1)

(2a)

= _(t)

dYly = 0

(2b)

Let K(t) and a(t) be expressed as positive constants plus time varying

parts as follows:

K(t) = Ko + k(t) ; Ko> 0

and

a(t) = ao + oQ(t) ; ao> 0

(3)

(4)

It is also convergent to express the nonlinear function as:

f(y,t) : (K(t) - _ (y,t)} y

As a consequence of (2b) , # (y,t) must satisfy the conditions:

(5)

_(O,t) = 0

y = o
y-_O _ Y

(6a)

(6b)

If (3), (_) and (5) are substituted into (i), the resulting

equation is

"c + ao_ = Koy + {k(t) - _(y,t)} y -=< (t) (7)
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In order to obtain a constant coefficient term in the output

variable c on _he left hand side of (7), unity linear feedback around

the process is introduced so that

y=r+u-c (8)

where r is the process input, and u the controlled input.

Thus,(7)nowbecozes

"c + aoC + Ko c = Ko (r+u)+ {k(t)- _(y,t)} (r+u-c)-o< (t)c (9)

The model beilavior is described by the equation

"C'd+ ao Cd + KoCd = Kor (i0)

The error between the desired output, cd , and the process output, c ,

is defined as

e --Cd - c (ll)

The equation in the error variable, obtained by subtracting (9)

_'rom (i0) is

For the special conditions

_((t) = 0 (13a)

(!2) reduces to

t_(y, ) = Koy (13b)

e + ao e * Ko e -- -Ko u (14)

Conditions (13_) _ud (13b) Lmply that model and process are identical.

Under t_._e conditions, c d and c _.ill be identical only if the control

signal is zero. Therefore, the requirement is placed on u that

u = o for c d = c

-4-



sl_n_e_ v_ctor'' no_ ....o_ I i.e.

With this requirement on u (_) reduces to the autonomous linear

equation

e=Ae
m

whet@

e _-

(16)

(_7)

and I°1Ko- ao

For convenience, (12) is put into the form

$ = Ae+h

(17b)

(is)

where

h

m

(_(y_.t) - k(t)} (r-c) + e( (t> j (19)

The point S = o represents an equilibri_a state of (16).

Since (16) is identical in form to the autonomous model equation

cd = Ac d

them _ = o is an as_uuptotica!ly stable equilibrium point if a

stable model is used. In the further development of the theory,

it is assumed that this is the case.

S_ncc (16) is a linear autonomous equation, theor&m I (see

..ppencaz.2is applicable. The theorem is conveniently applied to

find a Liapunov f_uction for (16). Since _ = o is asymptotically

(2o)
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stable s t._,, the theorem assm'es that there are symmetric positive

definite matrices P and Q such that

ATp + PA =-_;

and also that

v(s)= _T_ __

is a Liaptuuov f'_ction for (16). This s_m.e function is used to

investigate the stability properties of (IS) v_th the idea in mind

that it is to be _zade a Liapunov function of that equation by

suitable choice of u.

The ti_=e derivative of (22) is

v(__) =iTP __+ e P __

Use of (!£) in (23) leads to

_/(e) = e_(A P + PA) e + 2eTph

The first ter:n on the right hand side of (24) is negative definite

because of (21)._" If the second term can be made less than or

equal to zero by choice of the controlled input u, then V(_e) will be

negative definite. Cor_equently, V(_e) (and also e) must then approach

zer% and u Li!l accomplish the desired result of forcing the process

output to follow the model output.

In order to deterzz[ne the required u s the second term of (2/+)

is expanded as follows:

. }JL
Y

* This indicates the convenience of choosing (22) as a potential

Liapunov function for (18).

-6-

(2l)

(22)

(23)

(a)

(25)



_:here PI2 end P22 are elements of the P matrix and f(y,t)/y has been

used in place of {X(t) - _(y_ t) } . To insua_e that this term re.cumins

zero or .qo_b_le_ II is chosen as:

(26a)

where
_f

= P!2 e_ + P22 e2
(26b)

and sat b
C_l for O">i/_
,_' for-l/b< _ _ 1/b

--L-1 for _"< -1/b
(26c)

The saturation ftuuction (sat b _ ) is used rather than sign _ to

...._.....(15) and to avoid orob!ems involving the existence of solutions

of (12)2. Th,_ sattu-ation f_nction is zero for O" = O, but the sign

± d/_C _,Lon = O.

The controlled input u(t) as given in (26) is bounded and assures

a negative defir_te V(e) if

_o> _> 0
Y

i.e. f(y,t) lies in the first and third quadrants. That f(y,t)/y

rzast be positiv_ is seen from (25). Since it appears in the

denominator te_ns of (25) and (26)_ it cannot be zero if u is to be

a bo_%ded control signal. It is also clear from (26) that

_(y>t) , k(t) and c_(t) must be bom_.ded if u is to be finite. In

view of (5)_ the conditions l_(y,t) I _ cO , and Ik(t)l < o0,

lead to th_ condition f(y,t)/y< o0.

(27_
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Those theoretical results _f_!l no_zbe applied to a general

ey_.ple and to a specific design ex_p!e.

- " _ _._ system of Fig. i withThe _ollo_._no e'_m_moie.. pertains to _'_

i-"o = ao = 2. Che rs_ngcof variation of the nonlinear functions,

-_' _ _"_ t), _s in _" . . =-a(t)•kY_) and D_Y_ _ sho_._ zzg 3. The oole at s

varaes from s = o into the -lon_ half pl_ue to s = + 1. In accordance

'._dthzhe model used, _(t)_ and a(t) are chosen as:

K(t) : 2 ÷ k(t)

a(t)= 2 +c_(t)

(28a)

(28b)

w:_or_ - z.6_ l{(t)4o (2Sc)

:_.d - 3 4_<t)_<- 2

Fig. 36 illustrates that !_(y,t) - k(t) i _ 1.96.

Use of (9) leads to the process equation

(28d)

(29)

Sinc_ the P_odc! behavior is described by

_d + 2Cd + 2Cd = 2r

the error equation found by subtractirg (29) from (30) is

(30)

"e + 2e + 2e = {_(y,t) - K(t)}u + {_(y,t) - k(t)} (r-c)+_(t) c (31)

Tb_ ecuation ma_y be vrrittcn in matrix foz_ as:

$=Ae+ (32)
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_._ croced_e discussed _- conj_unction "._th (16) and (iS) ±s

applied to (32). For conver_ience, q of (2l) is chosen to be the

identity matri==:

O,=Lo
(33)

Then the solution of (2l) for P is

P = 1/o_ 3j]L
(34)

Thus_ for (32) the Liapu_nov f_nction is

2

V(!) = 5/4 ei + l/2 ez e2 + 3/8

2

e2 (351

and

i _f(y, _)_f {_(y,t)-k(t)_(r-c) + _(t) &} (361_(e>-- -_ - Z(2el+ 3ea), _ _ -
- L y J _ f (Y'_ t II/Y

_ro_, (26) the r_q ....d control signal is

_! r" {l_.9(r-o) l _" 175_I}_at b (2el÷ 3 Ie_1

(37)

_¢here b was chosen equal to i00.

The resultant system is illustrated in Fig. _. Fig. 5 shows

ar_logue computec reo^lts for c, cd and e. These results were taken

_Ji_!e _i (t) and k(t) _lere varving in a random step fashion between

th_ Ii_ts indicated in (23c) and(2?_d) and sho:_m in Fig. 3. It is

seen that c and cd are in close agreement.

_ com_uter results i_n Pig. 6 demonstrate the action of the
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control signal in te_s of V(_e). Projections of the curves V(e) = constant

on the 51 , e2 plane are sho_m along _cith trajectories of el(t ) vs. e2 (t).

For tb.e second order system under consideration, all initial conditions

a_e zero. Therefore, _ith the control signal present v(e)=o. In order

to obtain the results sho_.n_ the system was allowed to run uncontrolled

_ntil t I ; t 2 , etc. at which tiv.es the control signal was applied

(t = 0 sisnifLes the origin and is the tLv.e system was started by applying

a t_.o volt step input). It can be seen that all trajectories are such

that V (_c)< 0 after the control signal is applied. For t-_oo, all

trajectories approach the origin alo_ the s_nitching line e2 = -2/3 e1.

Another observation is that trajectories for Fig. 6a initially take

a n:ore leisurely approach to the s_itc_ming line than do those of Fig. 6b.

T>is is due tJ the fact that ga_.n factors in the equation for u, (37),

arc e.'_ctly tPose required for conditions in case a and larger than

_-cqui:'ed for conditions in case b. Also, the multiplying factor f(y,t)/y

£q the equation for V(e), (36), is larger in case b than in case a, and

this results in a more negative V(e).

rF. DT3iO-_ EL?S_IE FO[_ A CONDITIONALLY STABT_, PROCESS

The control system sho_ in Fig. 7 is conditionally stable. For

inputs greater than approx_mate!y 2 volts, it is seen from the phase

plane plot of Fig. 8 that the trajectories go to infinity. Use of

the control tec?-niquc rudder discussion is illustrated in Fig. 9. The

r._del m_:ed not be realized as shov,m, but is depicted as is so that

signals _!thin the raode! and process def_ued by x and z may be compared.
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The ::ode! behavior is given sy (30) and the system equation is

- d =  (yj = y

S L:c c

y = r + u-c-l.S&

k_:_; DeCo_.cs

"_ + ~_ + 2c = 2r - y)r + 2- y u + y) c * !.

(38)

(39)

The equation for e then is

The Liap_nov f_ction used in the last ez_mple is suitable

hcre_ the P matr_ of (34) being applicable.

The control signal u required to insure a negative definite

V(_) is fo'_nd to be

_ere agLin a b of i00 is used.

!'fith this control signal app!ied_ the overall system becomes

_,p_o____y stable and can handle any magnitude o_ input signal.

Analogue com_uter results indicated less than one percent error

between pla_2c and model outputs for step inputs as large as lO volts.

Fig. lO shows a phase plane trajectory (d' vs. d') for the system

of Fig. 7 _vith a 4 volt input applied. The results for d vs. a and

d vs 6 of Fig. 9, again for a 4 volt step input signal, are

sho:::_ _ ?e _'_'__u_ _osed in Fig. ii. It is seen that a close agreement

e_zts bet_zccn plant and model outputs _nd output derivatives. The

-ll-
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s::moth cur:c is _-_s of %:<e'model (d vs cg.'_ The noise in d' is

",_...... ;_"_':"_-_ _"_= s:.f_tc_ng involved in ........ _ ',

....._ c __nd cd are in close agreement and the ofp_ _s the

_/_.A ocLwcc_: c a_nd z and cd and x are !m.._a. _ taen signals x and

...... y identical, fact is used in desiisl to

cc-oer::_n_ over wr.aD range of y the restrictions on _(} ,%) must holdj

_k.i a'_so to d./Se:<-_ine the required linear range in the feedback path

wi_ch" sener .s u. This is accomo!ished, by _e_ern_n_"_ -" _" - what the

_:':_"., c_:om_........ _c_ of x (also z) _s_ for a glven" input, r. For step

in>uts _£ 2, 3; 4 and 5 volts, signals y and z were measured. _._[easured vs.

ckeorctioal values for y corresponding to each measured z are sho%,._

,=g- Is. "Tith this inforn_tion _t can be determdmed that for

s%c_ inl_Uts of _ volts amplitude or less, the restrictions on

-_"_ '_' are _'et_,:"_ oriy for lyl<19 (for exa_.ple f(y,t) r£ght

bO ""--'_ ..... +-a 1_:_ ....._ by hard saturation for Y l >19). Also in this case,

the f_e_ack 2 -_-'_vn must be capable of ha.hal!Lug [ulma.x _dthout

_°+ .... _" _ " I [ is 30 volts, and it_u_=o._. ._.conservative estimate for u max

_s ._,-_a by the inequality

.... . c_.m_ consideration is the gain b in the linear

ra_nge of the saturation f_nction defined in (26c). Since sat b _ is

used rather khan sign _" _ there is a small region near the origin of

the e- i_ c_ plane .... _' "....•;nzcn u _y not be large enough t o insure negative

defirzUbaness_ Consequently, !t_cit cycles may exT_st. However, by choosing b

±ar se e._uo_._ any such !_v£t cycle can be reduced to a negligibly szz_ll

aupiitu do.
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A r:ozLineLc controller design proced_'e based on Liapu_nov's

...... ;_ _na _so of a model reference is extended in this paper

to _:.'occsses h'-_r,Z not only tLme _- ,,_ _. ...... _ __r_n o oar_=e_ez-s, but a single

tLme va_jing: nor_linear gain element as well. Thus_ the procedure

a:_p=:cao,e to _ muc.. _._der class of control problems than heretofore

] conc_t_on whlch Lhe nor_linearity unust _ao_fy is derlvea. _rl]erent

im tka design procedure is the assur_.ce that the resulting controller

_f_i! ?__ve the desireable .... +,_p_ose, _ of guaranteeing the as3unptotic stability

of the over:._... < _..

'_-_'._+_"_" design considerations discussed in correction _.ith a

design e:.t_.-.ploinvolving a conditionally stable process include the

,oossibilities of !iT_t cycles due to the function sat b_, the method

for ae_er:_Lns ca_ab:.____t__es of the feedback _atn_ and the recuired

range o£ y for ......_- f(y_t) must satisfy the conditions imposed.

_ co,_c, resu!ts presented bear out _ =i<:aiogue "1 ....... _h_ validity of the

thco:%: and de::.ons%r_._,e the effectiveness of the controller in forcLng

t_u l]rocess ousouc to trac!- the model output.
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IZY_Z.QL22:

,....... on :_x; is ...._-'ve def:r_te (nesative definite) if F = 0

e_or - = 0 and F _ 0 (F<O) othey,.ise.

2, :'_',c_-on _<X_c) is y _-_+_' ' -_'--'= if there ecdsts a oositive

............=,._o__.:,!_ .,._ equilibrim_.l state _x = 0 of the eouation.

• ,_ (_,)

'_................. as_n:p_o_:cal_y stable if and

op_!y if_ siren a.nj s_=:etiric positive definite matrix O_ there

" _ .......... cositive defir_te matrix P such thate:Lq.SLS _. "-':'"_"_"-'--'-_'a .

;Tp + p;.= _ (2)

and ::'2:- is a li-ap_'--:ovfur.ction for (!).
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